FRP Solves Hydrochloric Acid Storage and Transportation Problems

hydrochloric acid storage tanksHydrochloric Acid (HCL) also known as Muriatic Acid is a corrosive, stable mineral acid that is clear to slightly yellowish in color.  Its versatility lends itself well to many industrial uses including hydraulic fracturing, pulp and paper, steel-making, PVC manufacturing, and chemical processing.  Similarly, it’s also used in the production of high-fructose corn syrups. HCL, while being versatile and widely used is also highly corrosive which makes maintaining supply and hauling a challenge.  

The History

HLC wasn’t always as widely used as it is today. Fuming Hydrochloric Acid’s  history can be traced back to the Middle Ages when common salt was mixed with “Oil of Vitriol” (Sulphuric Acid) to produce Hydrochloric Acid.  The word ‘Muriatic’ literally means ‘pertaining to salt or brine’.  Fast forward a few hundred years and HCL made its recorded debut in the 17th century.  However, it was not until market forces during Industrial Revolution, and an increased demand for alkaline products, that large-scale production of Fuming Hydrochloric Acid took place. Along with the large-scale production of HLC came large-scale needs for corrosion resistant vessels and piping for production, chemical storage, and transportation.

How corrosive is HLC?

In concentrations above 25%, HCL is considered highly corrosive and must be handled with extreme care and caution.  In concentrations of approximately 35% and higher, HCL is referred to as fuming HCL or fuming Muriatic Acid. 

Special requirements for handling, transporting, and storing HLC

When handling, transporting or storing HCL it is essential that is kept cool, dry and well ventilated. Industry specific drainage, venting, and corrosion resistant flooring can also present barriers to safe HCL storage. When storing or transporting HCL in large quantities, you must have a non-reactive, corrosion resistant chemical storage tank, pipe, vessel, or basin. 

The Solution

Fiber Resistant Polymers (FRP) provide a high quality, durable, strong, corrosion resistant solution to this problem. At Beetle all of our FRP pipe, tanks, vessels, and containers for corrosive fluid services have a corrosion barrier or liner. The type and thickness of this corrosion barrier/liner depends upon the specific service environment.

FRP is an ideal solution not just because of its corrosion resistance, but also because of its versatility. FRP custom tanks, pipes, or vessels can come in a wide variety of sizes from ½” to 14’ in diameter. Also, custom FRP corrosion resistant piping is lightweight when compared to other materials and can be fine-tuned to fit tanker trucks and detailed to meet specific esthetic requirements.  The high quality, durability, strength, corrosion resistance, and customization all make FRP an ideal solution for the challenges associated with HLC.

Chlorine Storage and Handling Using Fiberglass Tanks and Pipe

chlorine storage tanksThe corrosion and abrasion resistance of fiberglass reinforced plastics (FRP) make FRP ideal for handling caustic and abrasive manufacturing processes. The manufacturing of chlorine is one application where the benefits of FRP can make a large impact on the level of maintenance a facility will need and the overall efficiency of the process. To understand the impact FRP can have on chlorine manufacturing it is helpful to have an understanding of the process by which chlorine is produced.  

Manufacturing Chlorine

Chlorine can be manufactured by the electrolysis of a sodium chloride solution or a potassium chloride solution.  In the former, caustic soda (sodium hydroxide) and hydrogen gas are two co-products created as a result.  In the latter, caustic potash (potassium hydroxide) and hydrogen gas are two co-products created.

Because hydrogen is by-product of the electrolysis process, cost-effective considerations must be given to how it is properly and cost-effectively handled.  There are some common industrial approaches to this: hydrogen produced may be vented unprocessed directly to the atmosphere or cooled, compressed and dried for use in other processes on site or sold to a customer via pipeline, cylinders or trucks. Furthermore, some possible uses include the manufacture of hydrochloric acid or hydrogen peroxide, as well as desulphurization of petroleum oils, or use as a fuel in boilers or fuel cells.

Because the hydrogen gas must be cooled, condensation and moisture are always issues in this industry.  Cooling is imperative, as it improves the efficiency of both the compression and the liquefaction stage that follows. Chlorine exiting is ideally between 18°C and 25°C. After cooling the gas stream passes through a series of towers with counter flowing sulfuric acid. These towers progressively remove any remaining moisture from the chlorine gas. After exiting the drying towers the chlorine is filtered to remove any remaining sulfuric acid.

The Role of FRP

Chlorine gas exiting the cell line must be cooled and dried since the exit gas can be over 80°C and contains moisture that allows chlorine gas to be corrosive to iron piping.  FRP pipe, ductwork, tanks and other custom products can be created to be corrosion and abrasion resistant, making it ideal for handling the gas.   

Chlorine gas must also be compressed and liquefied during the manufacturing of chlorine.  Methods of compression include liquid ring, reciprocating, or centrifugal.  After compression, chlorine gas flows to the liquefiers, where it is cooled enough to liquefy. Non condensable gases and remaining chlorine gas are vented off as part of the pressure control of the liquefaction systems. These gases are routed to a gas scrubber. These vented off gases can cause corrosion and decrease plant efficiency. FRP chlorine gas scrubbers, towers stacks/shroud, fan casing, and inlet bell can also be utilized in plant design to leverage FRP’s corrosion and abrasion resistance to successfully increase plant efficiency and reduce maintenance.

FRP products are ideal for cooling and storage applications during the compression and liquefaction stages of chlorine gas production. Custom FRP components such as walkways, decking, bridges, stairs, and railings can further enhance structure, functionality and over-all durability of the plant.

Westar Uses Limestone Slurry Piping To Reduce Plant Down Time

westar energy

Westar Energy is the largest electric power producer in Kansas. From their various “energy centers” they produce electricity from wind, coal, nuclear, natural gas and landfill gas. Three years ago, in one of their coal fired centers, they refurbished their Flue Gas Desulfurization (FGD) system. The purpose of this system is to remove the sulfur dioxide (SO2) from the flue gas emissions. Limestone slurry is a product used in the flue gas emissions process to remove SO2. The limestone is abrasive and requires an abrasive resistant piping system. Abrasion resistant fiberglass pipe was chosen to move the limestone slurry within the system.

Westar fiberglass pipeAfter some time in operation, it was determined that there were areas of “high wear” in one of the 8 inch fiberglass pipe lines at some of the elbow locations. In order to replace the worn elbows, it required the shutting down of the system, draining of the lines, and time for fiberglass service crews to cut out and replace the elbow sections with butt and wrap joints.

Beetle Fiberglass repairThe Beetle Plastics LLC Technical Services Group, along with our sales representative Steve Furman of Tompkins, Furman & Associates, worked with Westar personnel at the site to understand the problem and to develop a design change to reduce their downtime due to these “high wear” elbows. The end design was to replace the “butt and wrap” fiberglass pipe elbows with flanged elbow connections. This design allows quick change out of the elbows when the wear issues occur. These change outs can be done by plant personnel without the time and expense for outside fiberglass field service crews, thus reducing cost and shortening the down time for the replacements.

The cost to shut down a power plant for an emergency repair is very high, both in the cost of power generation lost and manpower to make the repair. The solution developed through the cooperation between the personnel at Beetle, Westar and Tompkins, Furman will help to reduce future pipe maintenance costs in this FGD system and assure continued supply of electric power to Westar’s many customers.