Tag Archive for: Abrasion Resistance

Lime Slurry Piping Reduces Westar Plant Downtime

limestone slurry pipingOne of the many advantages of working with fiberglass is its versatility. Fiberglass can be used in abrasive and corrosive applications, but it can also be used to create custom parts to fit almost any need. Which is why we were so excited to help Westar Energy, the largest electrical power producer in Kansas, develop a fiberglass pipe solution in one of their coal-fired centers.

Three years ago Westar Energy refurbished a Flue Gas Desulfurization (FGD) system. Designed to remove sulfur dioxide, the system makes use of an abrasive limestone slurry. The limestone slurry caused areas of the system to experience high wear. When high wear areas needed to be replaced the system had to be shut down, resulting in costly downtime. We worked with Westar Energy to identify problem areas throughout the system and made design changes the reduced downtime and repair costs.

To find out how we helped the largest electrical power producer in Kansas design an abrasive resistant solution that helped reduce plant downtime, read the Westar FRP case study here.


Unique FRP Design Offers Solution To Flash Freezing

frp designFiber Reinforced Polymers (FPR), or fiberglass, is an excellent construction material.  Used throughout the world in a wide range of industrial and non-industrial applications, FRP boasts cost-effectiveness, design flexibility, dimensional stability, high strength-to-weight ratio, durability, and low maintenance costs—among other things. 

FRP has gotten a lot of positive attention lately for other benefits; FRP is corrosion and abrasion resistant and smoke and flame retardant.  An often glossed over advantage of FRP is its versatility; it can be made into nearly any shape—which comes in handy when designing for solutions that require a complex design, one that includes electronics, for example.

In the mining industry there are many types of corrosion that plague equipment and infrastructure, but in many cases it is characterized as corrosion enhanced by abrasion.  FRP continues to gain in popularity as a material solution for pump and piping systems in the mining and mineral industries.  In large part this is because FRP pipe can be formulated to resist abrasion and many types of corrosion; FRP will resist pitting, crevice, intergranular, galvanic, and cavitation types of corrosion, for example.

Equally important are the non-corrosive problems that exist in mining and plant operation.  One such well-documented problem exists when conveying coal from stockpile to boiler or around the mine site during frigid winter months.  Known throughout the industry as “flash freezing,” the problem begins anytime coal being transported or stored, picks up moisture, via snow or rain and comes into contact with metal that is at sub-freezing temperatures for extended periods of time.  When wet or frozen coal comes into contact with steel or other alloys at sub-freezing temperatures an instantaneous bond is formed. 

Flash freezing is a mining and plant operation problem that has been known to shut down production due to blocked conveyors, chutes and hoppers; a costly problem that in some cases requires pneumatic drilling to resolve.  One company has designed what they call a “Freeze Protection System” which consists of FRP heating panels.  The unique design incorporates a flat foil heating system, sewn into high quality woven glass and is encapsulated in a ¼” think lamination of FRP.  Units (panels) are placed around the chute, hopper, or silo and provide heat and insulation—alleviating flash freezing.

This is just one example of how FRP design intelligence and ingenuity is helping to solve industrial problems.  This example illustrates what is possible with FRP.  There is no question that FRP technology is increasing, but the question remains—how will it be employed in the future and what capacity?  In the case of “flash freezing” in the mining industry, what other ways can FRP be utilized to increase production?  Could FRP products replace steel transport cars?  Similarly, with a low coefficient of friction and good insulation properties could an FRP liner be used inside steel cars or dump tucks?

One thing is for certain; FRP is cost-effective material that continues to be used where other materials fall short.  FRP is a juggernaut; it has the ability to withstand the harshest most extreme environments and has long unmatched life cycles. While some problems may be less pervasive than others, or beckon a more niche solution, there is no denying that there are real opportunities for FRP manufactures. 

From mining and minerals, power generation, and chemical processing to pulp and paper, wastewater treatment and architectural—fiberglass is a durable construction material that has proven it’s worth, time and time again.

FRP Mining Solutions Solve Corrosion Problems

frp miningMany industries report major problems with corrosion each year. It’s a serious problem that can impact production and safety.  According to the World Corrosion Organization, the estimated cost of corrosion damage worldwide is 2.2 trillion dollars which is roughly 3%-4% of GDP of industrialized nations. 

The mining, mineral processing and extractive metallurgy industries posses the ingredients for an extremely corrosive environment—water, grinding media, dissimilar materials, oxygen, wide pH ranges, and the presence of many microorganisms that promote conditions for corrosion.  According to one corrosion study released by CC Technologies Laboratories, Inc., (Dublin, OH), it was estimated that an average of $93 million dollars was spent annually (1998 estimate) on maintenance painting of metal surfaces, to control corrosion in the coal mining industry.

Corrosion can result from a wide range of conditions and thus can be characterized many different ways.  For example, corrosion in the mining industry is often characterized as corrosion enhanced by abrasion—this is especially true for pipe and pumping systems used in many mining milling processes.  It’s also important to note, the wide range of conditions that can cause corrosion, and because mine atmospheres and waters are unique and vary from one location to the next, make each corrosion related problem difficult to plan for.  This particular type of challenge makes material selection a critical component of most corrosion management strategies.

According to that same study released by CC Technologies Laboratories Inc., which interviewed many engineers and mining professionals, material selection is the most important general form of corrosion prevention. It has been demonstrated many times over that choosing the correct material based on the environment decreases the amount of corrosion and lengthens the life span of the equipment

FRP abrasion and corrosion resistant pipe provide a cost effective material alternative to traditional metal alloys. FRP will not succumb to particulate abrasion or erosion and are often selected for their long life cycles and low maintenance costs.   Conversely, with traditional metal piping and pump systems the particulate erodes and removes the protective film of the metal and exposes the reactive alloy to high flow velocity, thus accelerating the corrosion mechanisms.

One corrosion related issue in the mining industry is that it limits the life span of the processing equipment. Specific areas of major concern due to personal safety and continuation of production include: wire rope, roof bolts, pump and piping systems, mining electronics, and acid mine drainage.  Similarly, acid mine drainage can cause corrosion problems with pipes, well screens, damns, bridges, water intakes and pumps.

Although protective coatings, corrosion inhibitors, and electrochemical techniques such as cathodic protection are valuable and useful ways to deal with corrosion—they are a short term fix.  For example, a 2-coat alkyd/no blasting (4 mil) coating on a metal surface may need touch-up yearly and replacement every two years.  Similarly, a 3-coat epoxy/with blasting (10 mil) will need touch-ups every 4 years and replacement after 8 years.  On the other hand, FRP have a well documented service life of 35+ years (in some cases more) in harsh corrosive environments throughout the world in mining and minerals, chemical processing, power generation, wastewater, desalination, and pulp and paper.

While FRP does not solve every material problem for every industry, it cannot be denied that it is a cost-effective material that performs exceptionally well in extremely harsh environments, including mining sites.  FRP offers design flexibility with constructability.

FRP can be formulated to be abrasion and corrosion resistant. It has a high strength-to-weight ratio, dimensional stability, and offers superior durability—among much else.  Whether you are searching for a new design, material upgrade, or custom components that will interface with existing infrastructure or layout—FRP offer a multitude of benefits for many applications.

Chlorine Storage and Handling Using Fiberglass Tanks and Pipe

chlorine storage tanksThe corrosion and abrasion resistance of fiberglass reinforced plastics (FRP) make FRP ideal for handling caustic and abrasive manufacturing processes. The manufacturing of chlorine is one application where the benefits of FRP can make a large impact on the level of maintenance a facility will need and the overall efficiency of the process. To understand the impact FRP can have on chlorine manufacturing it is helpful to have an understanding of the process by which chlorine is produced.  

Manufacturing Chlorine

Chlorine can be manufactured by the electrolysis of a sodium chloride solution or a potassium chloride solution.  In the former, caustic soda (sodium hydroxide) and hydrogen gas are two co-products created as a result.  In the latter, caustic potash (potassium hydroxide) and hydrogen gas are two co-products created.

Because hydrogen is by-product of the electrolysis process, cost-effective considerations must be given to how it is properly and cost-effectively handled.  There are some common industrial approaches to this: hydrogen produced may be vented unprocessed directly to the atmosphere or cooled, compressed and dried for use in other processes on site or sold to a customer via pipeline, cylinders or trucks. Furthermore, some possible uses include the manufacture of hydrochloric acid or hydrogen peroxide, as well as desulphurization of petroleum oils, or use as a fuel in boilers or fuel cells.

Because the hydrogen gas must be cooled, condensation and moisture are always issues in this industry.  Cooling is imperative, as it improves the efficiency of both the compression and the liquefaction stage that follows. Chlorine exiting is ideally between 18°C and 25°C. After cooling the gas stream passes through a series of towers with counter flowing sulfuric acid. These towers progressively remove any remaining moisture from the chlorine gas. After exiting the drying towers the chlorine is filtered to remove any remaining sulfuric acid.

The Role of FRP

Chlorine gas exiting the cell line must be cooled and dried since the exit gas can be over 80°C and contains moisture that allows chlorine gas to be corrosive to iron piping.  FRP pipe, ductwork, tanks and other custom products can be created to be corrosion and abrasion resistant, making it ideal for handling the gas.   

Chlorine gas must also be compressed and liquefied during the manufacturing of chlorine.  Methods of compression include liquid ring, reciprocating, or centrifugal.  After compression, chlorine gas flows to the liquefiers, where it is cooled enough to liquefy. Non condensable gases and remaining chlorine gas are vented off as part of the pressure control of the liquefaction systems. These gases are routed to a gas scrubber. These vented off gases can cause corrosion and decrease plant efficiency. FRP chlorine gas scrubbers, towers stacks/shroud, fan casing, and inlet bell can also be utilized in plant design to leverage FRP’s corrosion and abrasion resistance to successfully increase plant efficiency and reduce maintenance.

FRP products are ideal for cooling and storage applications during the compression and liquefaction stages of chlorine gas production. Custom FRP components such as walkways, decking, bridges, stairs, and railings can further enhance structure, functionality and over-all durability of the plant.

Westar Uses Limestone Slurry Piping To Reduce Plant Down Time

westar energy

Westar Energy is the largest electric power producer in Kansas. From their various “energy centers” they produce electricity from wind, coal, nuclear, natural gas and landfill gas. Three years ago, in one of their coal fired centers, they refurbished their Flue Gas Desulfurization (FGD) system. The purpose of this system is to remove the sulfur dioxide (SO2) from the flue gas emissions. Limestone slurry is a product used in the flue gas emissions process to remove SO2. The limestone is abrasive and requires an abrasive resistant piping system. Abrasion resistant fiberglass pipe was chosen to move the limestone slurry within the system.

Westar fiberglass pipeAfter some time in operation, it was determined that there were areas of “high wear” in one of the 8 inch fiberglass pipe lines at some of the elbow locations. In order to replace the worn elbows, it required the shutting down of the system, draining of the lines, and time for fiberglass service crews to cut out and replace the elbow sections with butt and wrap joints.

Beetle Fiberglass repairThe Beetle Plastics LLC Technical Services Group, along with our sales representative Steve Furman of Tompkins, Furman & Associates, worked with Westar personnel at the site to understand the problem and to develop a design change to reduce their downtime due to these “high wear” elbows. The end design was to replace the “butt and wrap” fiberglass pipe elbows with flanged elbow connections. This design allows quick change out of the elbows when the wear issues occur. These change outs can be done by plant personnel without the time and expense for outside fiberglass field service crews, thus reducing cost and shortening the down time for the replacements.

The cost to shut down a power plant for an emergency repair is very high, both in the cost of power generation lost and manpower to make the repair. The solution developed through the cooperation between the personnel at Beetle, Westar and Tompkins, Furman will help to reduce future pipe maintenance costs in this FGD system and assure continued supply of electric power to Westar’s many customers.

FRP and Abrasion Resistant Lining: Lined Pipe vs. Unlined Pipe

abrasion resistant lining

This is the second in a series of blog posts discussing lined FRP pipe vs. unlined FRP pipe. The first posts discusses corrosion resistance.

In this post, we discuss abrasion resistance.

Abrasion Resistance: There is an element of abrasive wear in almost all fluid service applications.  In the concern for corrosion resistance, this abrasion element of the environment is often overlooked.  Especially for pipe subjected to high flows or where there may be particulate matter contamination (i.e. cooling water applications, river water, waste handling, etc.) abrasion design needs to be considered for all FRP pipe.

As with corrosion resistance, the resin matrix provides the abrasion resistance.  With a properly designed and selected corrosion barrier/liner, the abrasion resistance (and the pipe life) can be up to ten times greater than for unlined pipe, where the glass filaments are directly exposed to the service wear.  With unlined pipe, very rapid wear can occur, with the roving filaments being “picked” away from the surface.

Through further modifications of the corrosion barrier/liner, consisting of proper resin
selection, proper type of non-glass reinforcement, and armoring modifiers, the abrasion resistance of the corrosion barrier can be further improved.

Another compelling reason for always using a corrosion barrier/liner in FRP composite pipe is to provide the capability for changes in service environment. Even if the current service environment would not benefit from the additional protection of a corrosion barrier/liner, the addition of a corrosion barrier/liner provides insurance that future changes in the service stream can take place without concern for the life of the FRP pipe.

Perhaps the nature of the waste stream may be different five or ten years from today. Perhaps even for relatively mild cooling water or river water service, the end user may want to add treatment chemicals in the future. The zebra mussel that is attaching itself to the insides of pipe has made headlines.

The addition of a corrosion barrier/liner for pipe would provide additional abrasion resistance in removing, by mechanical means or hydro blasting, such mussel buildups.  The small additional cost for a corrosion barrier/liner can be a very inexpensive insurance policy for the future. 

The final benefit to using lined FRP composite pipe is lower in-service costs.  One of the advantages of FRP composite plastic pipe is its internal smoothness over its entire service life, especially when compared to other materials such as concrete, steel, etc.  This smoothness is translated into less friction and, thus, lower pumping cost. In some cases, even a smaller diameter pipe can be used.

Even small differences in the smoothness of the FRP pipe interior can be translated into dollar savings in electricity or fuel (for the pumps). The glass smoothness of the high resin content corrosion barrier/liner is measurably better than for unlined FRP pipe. In addition, the energy savings advantage of the resin-rich corrosion barrier/liner increases with age.

Summary:

Except for conduit, in almost all instances a corrosion barrier/liner can be economically justified for FRP composite pipe. We recommend, as a minimum, a 40 mil thick C-veil and/or Nexus reinforced corrosion barrier/liner. For moderate and severe corrosive environments, an even thicker corrosion barrier/liner should be considered.

We will be glad to work with you in selecting the best corrosion barrier/liner for their service
environment.  We are confident that “lined” FRP pipe will provide the end user their lowest cost per year of service life and, thus, their “Best Buy”.

Contact us today and we can arrange a test installation in your plant comparing Beetle Plastics abrasion resistant composite FRP pipe with your current piping and duct materials.


Improvements to Abrasion Resistant Pipe made from FRP Composites

abrasion resistant pipeJack Mallinson of FMC Corporation’s plant in Front Royal, Virginia, working in conjunction with Beetle Plastics, then located in Fall River, Massachusetts, conducted some of the earliest work in improving abrasion resistance of FRP pipe. These original developments took place
in the late 1960’s and early 1970’s.

This work found that significant increases in abrasion resistance could be achieved by adding armoring modifiers to the resin used for the internal corrosion barrier of the pipe. In those early days, the best modifiers were various forms and grades of aluminum oxides. There were problems in getting the aluminum oxide to disperse and “wet out”. However, once the aluminum oxide dispersed, improvements of abrasion life in the magnitude of two to three times over a non-modifi ed resin were achieved. The resin matrix used in those days was typically the Hetron 197 polyester resin.

While some companies that make so-called abrasion resistant pipe still use that same filler approach and formulation from the late 1960’s, Beetle continued to find a better way. In the early 1970’s, working with the late Walt Szymanski of Hooker Chemical, Beetle Plastics made major advances in the technology of abrasion resistance in FRP composites. In an extensive series of tests conducted in conjunction with Hooker, Beetle discovered that three fabrication techniques significantly influence the resulting abrasion resistance of the composite laminate.

Type of Resin: The type of resin used in making the inner abrasion/corrosion liner of the pipe influences the resulting abrasion resistance of the pipe. Special developmental elastomeric and epoxy vinyl ester resins signifi cantly increase the abrasion service life. Beetle Plastics
worked closely with Dow Chemical and Interplastics in developing these experimental resins. The selection of the proper resin, along with specifi c resin modifi cations, increases abrasion resistance by a factor of two to three times over a standard polyester or epoxy resin.

Type of Reinforcement: Beetle also discovered, in these series of Hooker tests, that the type of reinforcements used in the matrix signifi cantly infl uenced the abrasion resistance of the inner abrasion/corrosion liner. The tests demonstrated that specific types of
reinforcements greatly improved abrasion resistance of the laminate.

Also, a specific combination of selected reinforcements was critical to obtaining the optimum abrasion resistance. As the result of that knowledge, Beetle Plastics now uses a unique combination of laminate reinforcements that help significantly improve the total abrasion resistance of the composite laminate.

Armoring Modifier: Building on the early work done with FMC, Beetle conducted extensive tests to improve armoring modifiers. Beetle succeeded in developing a new type of modifier that provides superior armoring of the FRP composite. This material compares in toughness to
basalt, which in its natural form is often used as abrasion liners for steel pipe.

Over the years, Beetle Plastics has fine-tuned the specific grades of this armoring modifier material, selecting those that demonstrate the best performance in abrasion resistant FRP composite pipe. Beetle also developed techniques to gain the optimum dispersion and wetting out of this armoring modifier within the resin. Getting this ideal resin “hook” to the armoring modifier is also an important consideration when developing the best possible abrasion resistance of FRP laminates.

In order to gain maximum abrasion resistance from FRP composite pipe and laminates, it takes careful selection of all three of the important factors (resin, reinforcements, and armoring modifiers), in the proper ratios and interactions.  Test results from this research indicate reductions in abrasion loss in FRP composite laminates to just one-tenth that of non-modified laminates. In other words, you might expect increased service life of ten times, or more, from Beetle Plastics abrasion resistant composite pipe and ducts.

But, to paraphrase an old saying – “the proof is in the pudding”. For FRP composite abrasion resistant pipe, the proof is in the service life obtained in actual fi eld installations.

In tests, control installations showed substantial abrasion wear and failure in just several months of service life. Regular six-month and annual inspections at these plants of Beetle Plastics abrasion resistant pipe and elbows (an elbow is an area of high abrasive wear) showed little discernable wear.

Beetle continues to refine our FRP pipe abrasion resistant technology. As a result, you can confidently turn to Beetle Plastics for the best FRP composite abrasion resistant piping system available.

Customers at numerous projects have achieved outstanding FRP piping service life in highly abrasive applications such as lime slurry, fly ash slurries, and the extremely abrasive bottom ash service.

Contact us today and we can arrange a test installation in your plant comparing Beetle Plastics abrasion resistant pipe with your current piping and duct materials.