Posts

Fiberglass Corrosion Resistance and the Mining Industry

Corrosion is an inevitable part of the human experience; presently, approximately 44% of the world’s population lives within 150 kilometers of the coast, more than the entire world’s population in 1950. While corrosion has historically been defined as the destructive oxidation of metallic materials, recent definitions include the degradation of any material and its intended loss of function by exposure to and interaction with its environment.

Corrosion can result from a wide range of conditions and thus can be characterized many different ways. For example, corrosion in the mining industry is often characterized as corrosion enhanced by abrasion—this is especially true for pipe and pumping systems used in many mining/milling processes. It’s also important to note, the wide range of conditions that can cause corrosion, and because mine atmospheres and waters are unique and vary from one location to the next, make each corrosion related problem difficult to plan for. This particular type of challenge makes material selection a critical component of most corrosion management strategies.

Fiber Reinforced Polymers in the Mining Industry

Fiber Reinforced Polymer (FRP), or fiberglass, is an excellent construction material. Used throughout the world in a wide range of industrial and non-industrial applications, FRP boasts cost-effectiveness, design flexibility, dimensional stability, high strength-to-weight ratio, durability, and low maintenance costs—among other things. FRP products have been employed effectively in a diversity of applications, including pulp and paper, chemical processing, power generation, wastewater management, desalination, aerospace, architectural, food and beverage, and mining and minerals—among much else.

In the mining industry there are many types of corrosion that plague equipment and infrastructure, but in many cases it is characterized as corrosion enhanced by abrasion. FRP continues to gain in popularity as a material solution for pump and piping systems in the mining and mineral industries.

Click the button below to read the whitepaer and learn how fiberglass is perfectly suited for managing corrosive materials used in mining operations.

FRP Mining Solutions Solve Corrosion Problems

frp miningMany industries report major problems with corrosion each year. It’s a serious problem that can impact production and safety.  According to the World Corrosion Organization, the estimated cost of corrosion damage worldwide is 2.2 trillion dollars which is roughly 3%-4% of GDP of industrialized nations. 

The mining, mineral processing and extractive metallurgy industries posses the ingredients for an extremely corrosive environment—water, grinding media, dissimilar materials, oxygen, wide pH ranges, and the presence of many microorganisms that promote conditions for corrosion.  According to one corrosion study released by CC Technologies Laboratories, Inc., (Dublin, OH), it was estimated that an average of $93 million dollars was spent annually (1998 estimate) on maintenance painting of metal surfaces, to control corrosion in the coal mining industry.

Corrosion can result from a wide range of conditions and thus can be characterized many different ways.  For example, corrosion in the mining industry is often characterized as corrosion enhanced by abrasion—this is especially true for pipe and pumping systems used in many mining milling processes.  It’s also important to note, the wide range of conditions that can cause corrosion, and because mine atmospheres and waters are unique and vary from one location to the next, make each corrosion related problem difficult to plan for.  This particular type of challenge makes material selection a critical component of most corrosion management strategies.

According to that same study released by CC Technologies Laboratories Inc., which interviewed many engineers and mining professionals, material selection is the most important general form of corrosion prevention. It has been demonstrated many times over that choosing the correct material based on the environment decreases the amount of corrosion and lengthens the life span of the equipment

FRP abrasion and corrosion resistant pipe provide a cost effective material alternative to traditional metal alloys. FRP will not succumb to particulate abrasion or erosion and are often selected for their long life cycles and low maintenance costs.   Conversely, with traditional metal piping and pump systems the particulate erodes and removes the protective film of the metal and exposes the reactive alloy to high flow velocity, thus accelerating the corrosion mechanisms.

One corrosion related issue in the mining industry is that it limits the life span of the processing equipment. Specific areas of major concern due to personal safety and continuation of production include: wire rope, roof bolts, pump and piping systems, mining electronics, and acid mine drainage.  Similarly, acid mine drainage can cause corrosion problems with pipes, well screens, damns, bridges, water intakes and pumps.

Although protective coatings, corrosion inhibitors, and electrochemical techniques such as cathodic protection are valuable and useful ways to deal with corrosion—they are a short term fix.  For example, a 2-coat alkyd/no blasting (4 mil) coating on a metal surface may need touch-up yearly and replacement every two years.  Similarly, a 3-coat epoxy/with blasting (10 mil) will need touch-ups every 4 years and replacement after 8 years.  On the other hand, FRP have a well documented service life of 35+ years (in some cases more) in harsh corrosive environments throughout the world in mining and minerals, chemical processing, power generation, wastewater, desalination, and pulp and paper.

While FRP does not solve every material problem for every industry, it cannot be denied that it is a cost-effective material that performs exceptionally well in extremely harsh environments, including mining sites.  FRP offers design flexibility with constructability.

FRP can be formulated to be abrasion and corrosion resistant. It has a high strength-to-weight ratio, dimensional stability, and offers superior durability—among much else.  Whether you are searching for a new design, material upgrade, or custom components that will interface with existing infrastructure or layout—FRP offer a multitude of benefits for many applications.

FRP Well Suited for Potash Mining Equipment

It has been demonstrated many times over that modern Fiber Reinforced Polymers (FRP) are extremely durable in a myriad of applications.  Furthermore, FRP have tremendous promise in a wide range of industrial applications, such as potash mining.  Chief among the many benefits of FRP are corrosion resistance and long life cycles in extremely stringent environments—for example, chemical processing, mining and minerals, and pulp and paper.

In contemporary societies, in both industrial and non-industrial applications, we rely on complex systems of infrastructure for safety, prosperity, and economic health. The use of FRP in complex industrial has with time become more widely adopted due to their ability to withstand the harshest environments. According to an educational module released in 2006, prepared by ISIS Canada, a Canadian Network of Centers of Excellence, titled “Durability of FRP Composites for Construction,” a primary motivation for using FRP in civil engineering applications is that FRP are non-corrosive and thus they will not degrade in electrochemical environments.

Potash mining is often conducted in a low pH high chloride environment where variables such as temperature, humidity, exposure to moisture, water, and caustics are important considerations.  FRP are viewed by many as excellent construction materials that will provide protection against caustics, acids, and continuous wet or humid conditions.

In today’s world potash refers usually just refers to potassium chloride.  Potash has a key role production of fertilizer (its one of the three essential nutrients that plants need for healthy growth) and thus in food production, and is one of the crucial ingredients of the world economy. Approximately 75%-85% of the world’s potash production is used for fertilizer.  The rest is used in various chemical processes.

According to a March 19, 2013 web based article published from mining.com, titled “Inventories Up, Prices Down,” demand is up for North American potash on domestic and export markets.  In February worldwide potash exports were up 26% to 812,000 tones from one year previous.  Furthermore, potash producers remain optimistic as crop prices rise, farmers are willing to spend more on fertilizer.

With global population rising and improving diets in developing countries- potash production and other nutrients such as nitrogen and phosphorus are expected to increase.  This is welcome news for FRP producers.  FRP are viewed by many as a great material choice for both conventional shaft mining and solution mining applications of potash because of its inherent properties; corrosion and abrasion resistance, long service life, low maintenance, ease of installation, and cost-effectiveness.  From tanks to pipe, from structural shape to custom components—FRP possess a portfolio of benefits unrealized by other conventional materials.