Posts

FRP Material Properties Put to Use

Viable solutions to complex problems—that’s what we all want in the end, right? For decades civil engineers have been seeking out alternatives to traditional materials of construction such as steel alloys. FRP, a relatively new class of composite material have proven to be economical and efficient with respect to the repair of buildings and structures in a broad range of industries. Fiber Reinforced Polymer composites are defined as a polymer (plastic) matrix, either thermoset or thermoplastic, that is reinforced (combined) with a fiber or other reinforcing material with a sufficient aspect ratio (length to thickness) to provide a discernable reinforcing function in one or more directions.

The high strength-to-weight ratio, also known as the specific strength, is an important material characteristic, this number allows you to compare materials of different mass or applications where resistance against breaking has priority. Typically, when comparing strength of materials of equivalent thicknesses and sizes, FRP will weigh one seventh as much as steel and half as much as aluminum.  Civil engineers have also come to appreciate the responsiveness of FRP materials; that is FRP responds linear-elastically to axial stress and can be custom designed and fabricated to meet engineering and end-user specifications with respect to axial compression, transverse tensile stress, and shear stress—among other things.

FRP material’s portfolio of benefits is diverse and includes important benefits to end-users such as excellent corrosion and abrasion resistance as well as overall durability—where other materials succumb to stringent and environments, FRP thrives.  Corrosion resistance of FRP is a function both of resin content and the specific resin used in the laminate.  Generally speaking, the higher the resin content, the more corrosion resistant the laminate.

FRP has been successfully employed in a multitude of harsh industrial and demanding structural construction scenarios including pulp and paper, oil and gas, desalination, chemical processing, waste water purification, mining and minerals, power generation, structural bridges, defense, aerospace, and marine —the list could go on and on.  Regarding the industrial/commercial side of things, here are a few common corrosion resistant FRP applications; hydrochloric acid, acetic acid, wet chlorine gas, ferric chloride, hydrogen sulfide, sulfur dioxide fume, and sodium hypochlorite—this list is not all-inclusive. For a complete list you’ll want to connect with a resin-manufacture or check out a manufacture’s resin guide.

The short of it is this—FRP when designed properly is a cost-effective material that has demonstrated its durability and ability to withstand industrial conditions, but also, importantly long-term environmental exposure—a key distinction that has interested many civil engineers involved in the rehabilitation, retrofitting and complete rebuilding of bridges, other load bearing structures and or architectural elements, such as, pre-stressing tendons, reinforcing bars, and grid-reinforcements and structural columns.  Regardless of what type of project type or project environment you are planning for there are likely supporting case studies available that demonstrate the opportunity, solutions and benefits realized when integrating FRP into project design.


Fiberglass Terminology

Like most technical and manufacturing industries, fiberglass has its own terminology. By and large you don’t need a large technical vocabulary to understand and interact with fiberglass reinforced polymer (FRP) literature, but there are some terms that will greatly increase your understanding.

Having a solid understanding of some of the most common fiberglass terminology is also helpful for more technical literature or when it comes time to discuss specific fiberglass solutions. Which is why we wanted to share with you a few of the terms we explain in our newest eBook Chemical Processing eBook: FRP Applications, Opportunities, and Solutions.

The Chemical Processing eBook is intended to be a good source of information regarding FRP and the chemical processing industry. While not exhaustive, the eBook is intended to be used as a supplemental tool and, as such, has a large section on common fiberglass terminology. Below you will find four of the most common and useful fiberglass terms to know.

Polymer– Polymers are substances whose molecules have high molar masses and are composed of a large number of repeating units. There are both naturally occurring and synthetic polymers. Composite materials are made up of a synthetic polymer matrix that is reinforced. Examples of synthetic polymers include epoxy, vinyl ester or polyester thermosetting plastic resins.

Reinforcement-Many different reinforcements may be used during the fabrication of FRP materials including polyester fibers, natural fibers, carbon fibers, arimid fibers, and glass fibers. The arrangement and combination of fiber reinforcements, along with resins, will in large part determine many of the characteristics of your final product. Examples of reinforcement types are surfacing mat, reinforced mat, chopped fibers, 13 woven fabrics, woven roving, and continuous strand roving.

Resin– Broadly defined, resins encompass a large class of synthetic products that have some of the physical properties of natural resins but are different chemically and are used chiefly in the manufacturing of plastics, fiberglass and other composites. Typically each resin has its own characteristic properties.

Corrosion Barrier– A resin rich veil layer that varies in nominal thickness depending on the service environment. Typically followed by random chopped strand mat or chopped strand roving; other subsequent reinforcements and scheduling may be utilized depending on the service environment or specifications. The high resin content of the corrosion barrier effectively shields the structural laminate from chemical attack. Inner layer and mat construction generally follow corrosion barriers for structural and mechanical purposes.

Download our free ebook Chemical Processing eBook: FRP Applications, Opportunities, and Solutions to learn more about FRP, fiberglass terminology, and corrosion.

FRP Products Meet a Diverse Set of Needs

FRP productsIt seems like every time we look at Twitter or the news we see another story about a new way manufacturers are using FRP. The versatility of FRP is one of the many things that make it a great construction and manufacturing material. We may not make fire hydrants or underwater turbines, but we do create a lot of FRP products like fiberglass pipe, duct, tanks, and vessels.

Fiberglass Pipe and Duct

Fiberglass pipe and ductwork can be used in virtually any application with diameters from 1/2 to 14 feet and the ability to be created with materials tailored to the specific end use.

Chemical Processing Pipe: FRP pipe is excellent for chemical processing because of its corrosion resistant properties.

Cooling Tower Pipe:Recognized as an industry standard, our cooling tower piping can be customized to meet almost any requirement.

Power Plant Pipe: FRP pipe and duct can be found in many power plant applications and processes.

Wastewater & Water Treatment Pipe: FRP waste water pipes can be used in above and below ground applications and offer a number of advantages over traditional materials like lightweight, durability, and strength.

Pulp and Paper Pipe: Ideally suited for the corrosive environments of the pulp and paper industry, FRP pipe can be found in many pulp and paper applications like sodium salts, methanol, and sulfuric acid.

Pipe Fittings: FRP fittings can be custom made to suit almost any need from bushings to reducers to everything in between.

Abrasion Resistant Pipe & Duct: Through careful selection of resin, reinforcements, and armoring modifiers we have created durable, customizable, abrasion resistant pipe.

Fiberglass Tanks and Vessels

Fiberglass tanks and vessels can be designed to custom design requirements to meet the needs of the individual customer. We offer a wide variety of tanks and vessels, including:

Pultruded Fiberglass Reinforced Polymer for Power Generation Plant

pultruded fiberglassWhen a customer came to us with an existing metal and wood scaffolding maintenance platform that needed to be replaced with a permanent material solution, we said no problem!

When designing fiberglass stairs, railings, platforms, and other structural products the unique properties of FRP make it a perfect solution. Some of the key properties to consider when designing structural products are:

  • Strong, lightweight, durable, will not rot or decay
  • Corrosion resistant, slip resistant, ultraviolet resistant, and non conductive
  • Molded in color reduces maintenance costs such as painting and coating
  • Can be customized in accordance with OSHA design specifications
  • Long-term maintenance costs are reduced

To see  how we used custom pultruded FRP to solve our customers maintenance platform problem, download the full case study here or by following the link below.


Unique FRP Design Offers Solution To Flash Freezing

frp designFiber Reinforced Polymers (FPR), or fiberglass, is an excellent construction material.  Used throughout the world in a wide range of industrial and non-industrial applications, FRP boasts cost-effectiveness, design flexibility, dimensional stability, high strength-to-weight ratio, durability, and low maintenance costs—among other things. 

FRP has gotten a lot of positive attention lately for other benefits; FRP is corrosion and abrasion resistant and smoke and flame retardant.  An often glossed over advantage of FRP is its versatility; it can be made into nearly any shape—which comes in handy when designing for solutions that require a complex design, one that includes electronics, for example.

In the mining industry there are many types of corrosion that plague equipment and infrastructure, but in many cases it is characterized as corrosion enhanced by abrasion.  FRP continues to gain in popularity as a material solution for pump and piping systems in the mining and mineral industries.  In large part this is because FRP pipe can be formulated to resist abrasion and many types of corrosion; FRP will resist pitting, crevice, intergranular, galvanic, and cavitation types of corrosion, for example.

Equally important are the non-corrosive problems that exist in mining and plant operation.  One such well-documented problem exists when conveying coal from stockpile to boiler or around the mine site during frigid winter months.  Known throughout the industry as “flash freezing,” the problem begins anytime coal being transported or stored, picks up moisture, via snow or rain and comes into contact with metal that is at sub-freezing temperatures for extended periods of time.  When wet or frozen coal comes into contact with steel or other alloys at sub-freezing temperatures an instantaneous bond is formed. 

Flash freezing is a mining and plant operation problem that has been known to shut down production due to blocked conveyors, chutes and hoppers; a costly problem that in some cases requires pneumatic drilling to resolve.  One company has designed what they call a “Freeze Protection System” which consists of FRP heating panels.  The unique design incorporates a flat foil heating system, sewn into high quality woven glass and is encapsulated in a ¼” think lamination of FRP.  Units (panels) are placed around the chute, hopper, or silo and provide heat and insulation—alleviating flash freezing.

This is just one example of how FRP design intelligence and ingenuity is helping to solve industrial problems.  This example illustrates what is possible with FRP.  There is no question that FRP technology is increasing, but the question remains—how will it be employed in the future and what capacity?  In the case of “flash freezing” in the mining industry, what other ways can FRP be utilized to increase production?  Could FRP products replace steel transport cars?  Similarly, with a low coefficient of friction and good insulation properties could an FRP liner be used inside steel cars or dump tucks?

One thing is for certain; FRP is cost-effective material that continues to be used where other materials fall short.  FRP is a juggernaut; it has the ability to withstand the harshest most extreme environments and has long unmatched life cycles. While some problems may be less pervasive than others, or beckon a more niche solution, there is no denying that there are real opportunities for FRP manufactures. 

From mining and minerals, power generation, and chemical processing to pulp and paper, wastewater treatment and architectural—fiberglass is a durable construction material that has proven it’s worth, time and time again.

FRP Well Suited for Potash Mining Equipment

It has been demonstrated many times over that modern Fiber Reinforced Polymers (FRP) are extremely durable in a myriad of applications.  Furthermore, FRP have tremendous promise in a wide range of industrial applications, such as potash mining.  Chief among the many benefits of FRP are corrosion resistance and long life cycles in extremely stringent environments—for example, chemical processing, mining and minerals, and pulp and paper.

In contemporary societies, in both industrial and non-industrial applications, we rely on complex systems of infrastructure for safety, prosperity, and economic health. The use of FRP in complex industrial has with time become more widely adopted due to their ability to withstand the harshest environments. According to an educational module released in 2006, prepared by ISIS Canada, a Canadian Network of Centers of Excellence, titled “Durability of FRP Composites for Construction,” a primary motivation for using FRP in civil engineering applications is that FRP are non-corrosive and thus they will not degrade in electrochemical environments.

Potash mining is often conducted in a low pH high chloride environment where variables such as temperature, humidity, exposure to moisture, water, and caustics are important considerations.  FRP are viewed by many as excellent construction materials that will provide protection against caustics, acids, and continuous wet or humid conditions.

In today’s world potash refers usually just refers to potassium chloride.  Potash has a key role production of fertilizer (its one of the three essential nutrients that plants need for healthy growth) and thus in food production, and is one of the crucial ingredients of the world economy. Approximately 75%-85% of the world’s potash production is used for fertilizer.  The rest is used in various chemical processes.

According to a March 19, 2013 web based article published from mining.com, titled “Inventories Up, Prices Down,” demand is up for North American potash on domestic and export markets.  In February worldwide potash exports were up 26% to 812,000 tones from one year previous.  Furthermore, potash producers remain optimistic as crop prices rise, farmers are willing to spend more on fertilizer.

With global population rising and improving diets in developing countries- potash production and other nutrients such as nitrogen and phosphorus are expected to increase.  This is welcome news for FRP producers.  FRP are viewed by many as a great material choice for both conventional shaft mining and solution mining applications of potash because of its inherent properties; corrosion and abrasion resistance, long service life, low maintenance, ease of installation, and cost-effectiveness.  From tanks to pipe, from structural shape to custom components—FRP possess a portfolio of benefits unrealized by other conventional materials.